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Nomenclature 

 

 

A The aspect ratio of the enclosure.  

���� The magnetic field strength vector, [wb/ m2] 

��  magnatic field strength, [wb/ m2] 

��  Forchheimer constant. 

��         Specific heat at constant pressure, [kJ/kg.K] 

           Diameter of spherical beads.[m] 

!��� The electric field vector, [volt/ m] 

"��#  The magnetic force, [N] 

"��#$ The total electromagnetic force, [N] 

"��$       The total electromagnetic force, [N] 

Fr Forchheimer number.  

g  Gravitational acceleration, [m/ s2] 

��       The Gebhart number. 

H The length in y-direction, [m] 

���� The magnetic field intensity. [ampere/ m] 

��� The magnetic influence number.  

%� The current density, [ampere/ area] 

%�&           The conduction current flow. 

%�$'       The magnetic field induces a current in the conductor. 

K Permeability, [m2] 

k Thermal conductivity of the porous  media and fluid, [W/m.K] 

P Pressure, [Pa] 

��� Modified Rayleigh number.  
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T Temperature, [K] 

(& The cold wall temperature, [K] 

() The hot wall temperature, [K] 

(�         The reference temperature, [K]  

u The velocity in x direction, [m/ s] 

*���          The velocity of the conductor, [m/ s] 

v The velocity in y direction, [m/ s] 

+#$    The work done on the system per unit time by the electromagnetic force, [Watt] 

W The length in x-direction, [m] 

 

Greek symbols 

α,          Thermal diffusivity, [m2/ s] 

µ Absolute viscosity,  [kg/m.s] 

µ� The magnetic permeability. 

ν Dynamic viscosity, [m2/ s] 

ε          Porosity.  

ρ The fluid density, [kg/ m3] 

ρ� The fluid density at some reference temperature, [kg/ m3] 

ρ#        The charge density. 

σ Electrical conductivity, [-Ω -�. ] 

β Coefficient of thermal expansion, [/01] 

�  The inclination angle of the enclosure, [degrees] 

ψ Streamline function. 

 Ψ Dimensionless stream function.  

Subscripts 

2          To describe the nodal points in the x-direction. 
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j To describe the nodal points in the y-direction. 

N         Number of nodal points in the y-direction. 

M         Number of nodal points in the x-direction. 

34        The increment in the x-direction. 

35        The increment in the y-direction. 

centre   The centre of the enclosure. 

Mean    The average Nusselt number. 
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Abstract 

 
       In this work the magnetohydrodynamics natural convection heat transfer with Joule and 

viscous heating effects inside a porous media filled inclined rectangular enclosures has been 

investigated numerically. The boundary conditions selected on the enclosure are two adiabatic 

and two isothermal walls. The governing equations, continuity, Forchheimer extension of Darcy 

law and energy, are going to be transformed into dimensionless form using a set of suitable 

variables then solved numerically using a finite difference scheme. The governing parameters are 

magnetic effect, Gebhart number, Modified Rayleigh number, inclination angle, and the aspect 

ratio of the enclosure. It is found that the heat transfer and fluid flow are decreased with the 

increasing of magnetic influence number, but they are increased with the increasing of Modified 

Rayleigh number and the Aspect ratio. By increasing Gebhart number the heat transfer and fluid 

flow inside the enclosure are increased.  
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Chapter 1 
Introduction 
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1.1 Introduction: 

It is very important to get better understanding of the flow in a porous media. Many processes in 

nature involve transport processes in such media. In many parts of the world water that has been 

stored for thousands of years in large volumes of porous rock is an important asset. Similarly the 

world supply of oil was formed and stored under special circumstances in porous rock 

formations. Other processes, which involve flow in a porous media, are frost heaves, filtration or 

straining and sewage purification in sand beds. The flow of homogeneous fluids through porous 

media is sufficiently wide in scope to find applications in many branches of applied science. By 

the term homogeneous fluid is meant essentially a single-phase fluid. This may be either a gas or 

a liquid.     

The study of fluid, which is electrically conducted and moves in a magnetic field, is known as a 

magneto hydrodynamics (MHD), it is a relatively new but important branch of fluid dynamics, 

when a conducting fluid such as mercury moves through a magnetic field, the generated current 

interacts with the magnetic field to produce a body force on the fluid. The study of MHD flow in 

a porous media becomes very important in nuclear reactors, where the MHD effect is very 

dangerous and important.  

The general nature of the porous media: 

1- Porosity, which is a measure of the pore space and hence of the fluid capacity of the 

medium. 

2- Permeability, which is a measure of the ease with which fluids may transfer through 

medium under the influence of a driving pressure. 
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1.2 Darcy’s Law: 

Henry Darcy’s (1856) investigations into the hydrology of the water supply of Dijon and his 

experiments on steady-state unidirectional flow in a uniform medium revealed proportionality 

between flow rate and the applied pressure difference. In modern notation this is expressed, in 

refined form, by 

6 � 7/
µ
89
84 																																																																												:�
�; 

Here 89 84.  is the pressure gradient in the flow direction and	µ is the dynamic viscosity of the 

fluid. The coefficient K is independent of the nature of the fluid but it depends on the geometry 

of the medium and it is known as the permeability. 

1.3 Forchheimer’s Equation: 

Darcy’s equation (1.1) is linear in the velocity u, it holds when u is sufficiently small. In practice, 

“sufficiently small” means that the Reynolds number Re of the flow, based on a typical pore or 

particle diameter, is of order unity or smaller. As u increases, the transition to nonlinear drag is 

quite smooth; there is no sudden transition as Re is increased in the range 1 to 10. Clearly this 

transition is not one from laminar to turbulent flow, since at such comparatively small Reynolds 

numbers the flow in the pores is still laminar. Rather, the breakdown in linearity is due to the fact 

that the form drag due to solid obstacles is now comparable with the surface drag due to friction. 

The appropriate modification to Darcy’s equation is to replace Eq. (1.1) by 

6 � 7/
µ
89
84 <

��=
>/ 6�																																																																:�
�; 
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where �� is a dimensionless form-drag constant. Equation (1.2) is a modification of an equation 

associated with the names of Dupuit (1863) and Forchheimer (1901). The geometric function �� 

(Forcheimer number) and the permeability of the porous medium K are based on Ergun’s 

empirical expression, Ergun (1952), which may be used for the packed beds that may be closely 

modeled as spherical beads of diameter, d, and is given by 

/ � ?@ �
���:� 7 ?;� 																																																																	:�
�; 

�� � �
A�
:���?@;1 �B 																																																																				:�
; 

where (d) is the particle pure diameter, and :?; is the porosity. 

1.4 Oberbeck-Boussinesq Approximation: 

In studies of natural convection we add the gravitational term =	C  to the right-hand side of the 

Forchheimer’s equation (1.2) or its appropriate extension. For thermal convection to occur, the 

density of the fluid must be a function of the temperature, and hence we need an equation of state 

to complement the equations of mass, momentum, and energy. The simplest equation of state is 

= � =�D� < E:( 7 (�;F																																																							:�
�; 

where =� is the fluid density at some reference temperature (� and E is the coefficient of thermal 

expansion. In order to simplify the subsequent analysis, one employs the Boussinesq 

approximation whenever it is valid. Strictly speaking, one should call this the Oberbeck-

Boussinesq approximation, since Oberbeck (1879) has priority over Boussinesq (1903), as 
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documented by Joseph (1976). The approximation consists of setting constants all the properties 

of the medium, except that the vital buoyancy term involving E is retained in the momentum 

equation. 

1.5 Heat transfer in magneto hydrodynamic ( MHD) system: 

Magneto hydrodynamics (MHD) is a relatively new but important branch of fluid dynamics. It is 

concerned with the interaction of electrically conducting and electromagnetic fluids. When a 

conducting fluid moves through a magnetic field, an electric field and consequently a current 

may be induced and, in turn, the current interacts with the magnetic field to produce a body force 

on the fluid. MHD flow occurs in the sun, the earth’s interior, the ionosphere, and the stars and 

their atmosphere, and many new devices have been made which utilize the fluid electromagnetic 

field interactions, such as travelling wave tubes, electrical discharges, and many others. Some 

basic electromagnetic concept as follows:   

For a neutrally charged system the current density %� is given by: 

	%� � G
 !���																																																																									:�
H; 
Where G is the electrical conductive and !��� is the electric field vector. The magnetic field strength 

	���� is expressed by: 

���� � I�
 ����																																																																									:�
A; 
Where I� is called the magnetic permeability and ���� is the Magnetic field intensity. The force 

exerted on a system of charged particles by an electric field is given by: 

"��# � =#
 !���																																																																									:�
�; 
Where =# is the charge density. The magnetic force exerted on a current carrying conduction is 

expressed by: 
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"��$ �	 %�	J 	����																																																																						:�
�; 
The total electromagnetic force is given by: 

"��#$ � =#
 !��� <	 %�	J 	����																																																																						:�
��; 
The work done on the system per unit time by the electromagnetic force is expressed by: 

+#$ � "��#$
 *���																																																																						:�
��; 
Where V is the velocity of the conductor. 

The magnetic field induces a current in the conductor is given by: 

%�$' � G:*��� J 	����	;																																																																								:�
��; 
Then, the conduction current flow is given by: 

%�& � G:!��� < *��� J 	����	;																																																																								:�
��; 
And the total current flow is given by: 

%� � %�& < =#
 *���																																																																																						:�
�; 
For the electromagnetic work Holman (1990): 

+#$ � !���
 %� 7 %�&
 %�&G 																																																																				:�
��; 
The fluid dynamical aspects of MHD are handled by adding the electromagnetic force and work 

to non-Darcy equations and energy equation respectively. The governing equations that describe 

the problem under consideration can be written as: The continuity equation: 

86
84 <

8K
85 � �																																																																																				:�
�H; 

The momentum equation in x and y-directions: 

I6
/ < =��

>/ 6� < G���6	 � 789
84 < =EC:( 7 (&;�LM�																									:�
�A; 
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IK
/ < =��

>/ K� < G���K	 � 789
85 < =EC:( 7 (&;M2N�																															:�
��; 

                                   

The energy equation: 

6 8(84 < K8(85 �
O
=�� P

8�(
84� <

8�(
85�Q <

R
/�� 6P6 <

��>/R 6�Q < G���=�� 6�									:�
��; 

Where the term (G���) represents the effect of magnetic field force on the fluid velocity, and the 

term (STUVW&X) represents the work done by magnetic field force on the fluid.                 
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Chapter 2 
Literature Review 
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Since the early work of Darcy in the 19th century, extensive investigations have been conducted 

on flow and heat transfer through porous media, covering range of different fields and 

application such as geothermal operation, nuclear reactors, transpiration cooling, and building 

thermal insulation. 

Magneto hydrodynamics has been a subject for many researchers in the field. Henoch and Meng 

(1991) used the magnetic force to retard the transition to the turbulent boundary layer and reduce 

the frictional Darcy force. Kim and Lee (2000) set up an experiment using a circular cylinder 

where electrodes and magnets are installed in an alternative sequence in axial direction of the 

cylinder to generate magnetic force in the circumferential direction. Many authors had studied 

the effects of magnetic on mixed, natural and forced convection heat transfer problems. Chandra 

and Gosh (2001) studied the effect of magnetic field on electrically conducted visco-elastic fluid; 

they found in such a flow that the velocity field decreases with increase of magnetic field 

strength. Sparrow and Cess (1961) investigated the free convection heat transfer due to the 

simultaneous action of buoyancy and induced magnetic forces; the analysis is carried out for 

laminar boundary-layer flow about an isothermal vertical plate. They found that the free 

convection heat transfer to liquid metals may be significantly affected by the presence of 

magnetic field, but that very small effects are experienced by other fluid. Raptis and Singh 

(1983) studied the effect of a uniform transform transverse magnetic field on the free convection 

flow of an electrically conducting fluid past an infinite vertical plate for classes of impulsive as 

well as uniformly accelerated motion of the plate. They found that the effect of the magnetic 

field is to increase the velocity field on both cases. A
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Jha (2001) discussed the combined effect of natural convection and uniform transverse magnetic 

field on the Couette flow of an electrically conducting fluid between two parallel plates for 

impulsive motion of one plate. Comparative study is made between rile velocity field for 

magnetic field fixed with respect to plate and a fixed magnetic field with respect to the fluid. 

Hossain (1992) had studied the effect of viscous and Joule heating on the flow of an electrically 

conducting and viscous incompressible fluid past a semi-infinite plate of which temperature 

varies linearly with the distance from the leading edge and in the presence of uniform transverse 

magnetic field. The equations governing the flow are solved numerically applying the finite 

difference method along with Newton's linearization approximation. The combined effects of 

forced and natural convection heat transfer in the presence of transverse magnetic field from 

vertical surfaces are studied by many researchers. Garandet et al. (1992) had analyzed the 

equations of the magneto hydrodynamics that can be used to model the effect of a transverse 

magnetic field on the buoyancy driven convection in a two dimensional cavity. 

Aldoss et al.( 1995) Studied the effect of mixed convection heat transfer from a vertical plate 

embedded in a saturated porous medium and subjected to a uniform magnetic field. They found 

the strength of the magnetic field has an effect on the Nusselt number and wall shear stress and 

the increasing of the magnetic field strength has the effect of decreasing the local Nusselt 

number in the mixed convection regime.  

Recently, Duwairi and Damseh (2004, a) studied the effects of MHD-natural convection heat 

transfer from radiating vertical porous surfaces, they found non-similarity parameter to solve this 

problem with fluid suction or injection along the stream wise coordinate and found that the 

increasing of the magnetic field strength decreases the velocity and the heat transfer rates inside 
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the boundary layer. Duwairi and Duwairi (2004, b) studied the thermal radiation heat transfer 

effects on the MHD-Rayleigh flow of gray viscous fluids under the effect of a transverse 

magnetic field, the free convection heat transfer problem from constant surface heat flux moving 

plate is selected for study. They found that the increasing of the magnetic field strength 

decreased the velocity inside the boundary layer. Duwairi and Al-Araj (2004, c) studied the 

MHD-thermal radiation interaction along a vertical cylinder embedded in a plain medium; they 

found that the increasing of magnetic forces decreased velocities and heat transfer rates to the 

conductive fluids. Duwairi and Al-Kablawi (2006) formulated the MHD-conjugative heat 

transfer problem from vertical surfaces embedded in saturated porous media; the inclusion of 

conduction parameter to the MHD traditional mixed convection problem is achieved. Duwairi et 

al. (2006) studied the transient MHD natural convection heat transfer problem using non-

Boussinesq approximation. Hammad and Duwairi (2008) solved the non-Newtonian MHD 

convection heat transfer problem a round a non isothermal cylinder and spheres. A gain the 

magnetic forces had a retarding effects on the flow and heating effect of the fluid layers, which 

had decreased the local Nusselt numbers. 

In all the previous studied the MHD effects for externally flow are investigated either for fluid 

flow in a plain or a porous media, but little attention is given to the internal flow heat transfer 

problem due to complexity in solving for the pressure gradients inside different conduits. In this 

study the MHD-natural convection interaction inside rectangular porous filled enclosures are 

going to be formulated using continuity, Forchheimar of Darcy law and energy, the governing 

equations are going to be transformed into dimensionless form using a set of suitable variables 

then solved. Two sides of the rectangular enclosure are adiabatic and the other two are 

isothermal. Different streamline profiles, dimensionless temperature profiles and local Nusselt 
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numbers are going to be drawn. Comparison with previous works available in limits of a 

traditional non conductive fluid is going to be laid. The parameters that describe the problem 

under consideration are; inclination angle parameter, aspect ratio parameter, magnetic effect 

parameter, Joule and viscous heating effects parameters of the rectangular porous media-filled 

enclosure, and the modified Rayleigh number. 
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Chapter 3 
Problem Formulations 
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3.1 Introduction: 

Several analytical studies have been performed in recent years relating to the problem of steady 

two-dimensional heat transfer by natural convection across porous media-filled rectangular 

enclosures which is, in general, inclined at an angle. In this work the magneto hydrodynamics 

natural convection heat transfer problem inside a porous media filled inclined rectangular 

enclosures is going to be studied. One wall of the enclosure is kept at uniform high temperature 

and the opposite is kept at a uniform low temperature. The other two walls of the enclosure are 

adiabatic, i.e., it is assumed that no heat is transferred into or out of walls.  

 

3.2 Analysis: 

In this study, the geometry considered is inclined rectangular enclosure, which embedded in a 

fluid-saturated porous media as shown in figure (3.1). The following important assumptions are 

made in order to obtain the governing equations: 

1. The flow is steady and two dimensional. 

2. The thermo physical properties of the fluid are homogeneous and isotropic. 

3. The temperature of the fluid is everywhere below the boiling point. 

4. The magnetic field is uniform throughout the boundary layer. 

5. The fluid inside the enclosure is incompressible fluid. 

Under these assumptions the governing equations which describe the problem are: 

The continuity equation: 

86
84 <

8K
85 � �																																																																																				:�
�; 
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The momentum equation in x and y-directions: 

I6
/ < =��

>/ 6� < G���6	 � 789
84 < =EC:( 7 (&;�LM�																														:�
�; 

IK
/ < =��

>/ K� < G���K	 � 789
85 < =EC:( 7 (&;M2N�																															:�
�; 

The energy equation:	

6 8(84 < K8(85 �
O
=�� P

8�(
84� <

8�(
85�Q <

R
/�� 6P6 <

��>/R 6�Q < G���=�� 6�									:�
; 

Where x and y are the inclination coordinates, and the corresponding velocities are u and v 

respectively, the gravitational acceleration g is acting downward in the direction opposite to the y 

coordinate.  

The Darcy effect is introduced through the term (IYZ ) in the momentum equation. The non-Darcy 

effect is introduced through the Forchheimer term (W[\>Z 6�) in the momentum equation in x and y-

directions. The magnetic effect is introduced into the governing equations through two terms 

(G���6	) and (G���K) in the momentum equation in x and y-directions, respectively. The viscous 

heating effect is introduced into the governing equations through the term : ]
Z&X 6 ^6 < [\>Z

] 6�_; 

in the energy equation. The Joule heating effect is introduced through the term (STUVW&X 6�) in the 

energy equation. The convection heat transfer effect is introduced into the governing equations 

through two terms (=EC:( 7 (&;�LM�) and (=EC:( 7 (&;M2N�) in the momentum equation in x 

and y-directions. 
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3.3 Boundary condition: 

The boundary conditions for the flow in the enclosure are: 

1. One wall of the enclosure is kept at uniform high temperature and the opposite is kept at 

a uniform low temperature. 

( � ()																				�`	4 � � 

( � ([																				�`	4 � +                                   (3.5) 

where W is the width of the enclosure as shown in figure (3.1). 

2. The other two walls of the enclosure are adiabatic. 

ab
ac � �								�`	5 � �	�N 	5 � �                               (3.6) 

where H is the lingth of the enclosure as shown in figure (3.1). 

3. Velocity component normal to wall = 0 on all walls. 

6 � �												�`	4 � �	�N 	4 � + 

K � �												�`	5 � �	�N 	5 � �                                (3.7) 
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Figure 3.1 Schematic of physical model and coordinate system 

 

3.4 Transforming the case of study into dimensionless form using a set of 

suitable variables: 

The solution will be obtained in terms of the stream function. The stream function is defined by: 

6 � 8d
85 � K � 78d

84 																																																																						:�
�; 

                                                         

In terms of the stream function, the continuity equation, i.e., Eq.(3.1), is: 

8�d
8485 7

8�d
84 85 � �																																																																						:�
�; 
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Derivation the momentum equation in x and y-directions, i.e., Eq.(3.2) and (3.3), with respect to 

y and x respectively and by subtracting the resulting equations, the pressure is eliminated and the 

following equation is obtained: 

I
/e

86
85 7

8K
84f <

=��
>/

86�
85 < G��� e8685 	7

8K
84	f � =EC e8(85 �LM� 7 8(

84 M2N�f																		:�
��; 

Using the definition of the stream function, Eq. (3.10) becomes: 

8�d
84� <

8�d
85� <

���>/R
8d
85

8�d
85� <

/G���I P8�d85� 	<
8�d
84� 	Q																							

																																																																									� =EC/
I e8(85 �LM� 7 8(

84 M2N�f																						:�
��; 

In terms of the stream function, the energy equation, i.e., Eq.(3.4), is: 

8d
85

8(
84 7

8d
84

8(
85 �

O
=�� P

8�(
84� <

8�(
85�Q <

R
/��

8d
85 P

8d
85 <

��>/R e8d85f
�Q																					

																																																																									< G���=�� e
8d
85f

� 																						:�
��; 

Equations (3.11) and (3.12) will be written in dimensionless form. For this purpose, the 

following dimensionless variables are defined: 

g � 4
+ � h � 5

+ 

i � d
j, � k �

( 7 ([() 7 ([ 																																											:�
��; 
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 Where, as before, the apparent thermal diffusivity of the porous material, j,, is equal to elW&Xf. 

In terms of variables defined in Eq. (3.13), Eq. (3.11) and (3.12) become: 

8�i
8g� <

8�i
8h� < �"m 8i8h

8�i
8h� < ��� P8�i8h� <

8�i
8g� 	Q �																					

																																																																									��� e8k8h �LM� 7 8k
8g M2N�f																						:�
�; 

8i
8h

8k
8g 7

8i
8g

8k
8h � 8�k

8g� <
8�k
8h� < ��8i8h P8i8h < "m e8i8hf

�Q				 

<:��;:���; e8i8hf
� 																						:�
��;	

Where ��� is the modified Rayleigh number based on the enclosure width W, i.e.: 

��� � EC/:() 7 ([;+j,R 																																																				:�
�H; 

here Fr is the Forchheimer number based on the enclosure width W, i.e.: 

"m � ��j,>/R+ 																																																																					:�
�A; 

 ��� is the magnetic influence number, i.e.: 

��� � /G���I 																																																																					:�
��; 
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and Ge is the Gebhart number, i.e.: 

�� � Rj,/��:() 7 ([;																																																																					:�
��; 

In terms of dimensionless variables defined in Eq. (3.13), the boundary conditions are: 

1. Isothermal walls 

											k � �																							�`	g � � 

k � �																							�`	g � �                                   (3.20) 

2. Adiabatic walls 

8k
8h � �								�`	h � �	�N 	h																																																						:�
��; 

Here A=� +.  is the so-called aspect ratio of the enclosure. 

In terms of the stream function, the boundary conditions on the velocity component normal to 

wall are: 

8d
85 � �												�`	4 � �	�N 	4 � + 

8d
84 � �								�`	5 � �	�N 	5 � �																																				:�
��; 

But the absolute value of the stream function is quite arbitrary because it is only derivatives that 

occur in the governing equations. Hence, it will arbitrarily be assumed that the stream function 

has a value of 0 at the point A shown in fig. (3.1). The boundary conditions indicate that 8d 85.  

is 0 along AB. Hence, d is 0 at point A, it is zero everywhere along AB. Along BC the boundary 

conditions indicate that 8d 84. � �. Hence, since d is 0 at point B, it is zero everywhere along 

BC. In similar way, it can be deduced that d is 0 everywhere along CD and DA. Hence, along all 
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of ABCD, d is 0 if it is arbitrary taken as 0 at point A. Hence, the boundary condition on the 

stream function is:  

�nn	o�nn	M6mp���M	d � �                                            (3.23) 

In terms of dimensionless variables defined in Eq. (3.13), the boundary condition on the stream 

function is: 

                      qN	�nn	o�nn	M6mp���M		i � �                                            (3.24) 

Equations (3.14) and (3.15) with corresponding boundary conditions (3.20), (3.21), (3.22) and 

(3.24) are giving to be solved numerically using finite difference technique for both the stream 

function and the dimensionless temperature.  
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Chapter 4 
Numerical Solution 
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4.1 Introduction: 

In recent years a large number of numerical methods have been developed for the solving of 

boundary layer equations, such as the finite difference method, Galerkin method, and finite 

element method. Of these, the finite difference method is at present the most common for 

boundary layer equations. In the finite difference approach, the dependent variables are 

considered to exist only at discrete points. Derivatives are approximated by finite difference 

resulting in an algebraic representation of the partial differential equation. Many different finite 

difference representations are possible for any given partial differential equation. 

  

4.2 Finite difference scheme: 

In this chapter, finite difference numerical procedure, basically identical to that used before to 

solve for a flow in a fluid-filled enclosure, will be discussed. The solution of equations by this 

method can be obtained by write the difference equations by using central differences. If a 

uniformly spaced grid is used and if attention is directed to the grid points, as shown in fig.(4.1), 

the following finite-difference form of Eq. (3.15) is obtained: 

rst�uvw0st�uxw
�yz { r|tvw�u0|txw�u�y} { 7 rstvw�u0stxw�u

�y} { r|t�uvw0|t�uxw�yz { � r|tvw�u0�|t�u~|txw�uy}V { < r|t�uvw0�|t�u~|t�uxwyzV { <

�� rst�uvw0st�uxw
�yz { �rst�uvw0st�uxw

�yz { < "m rst�uvw0st�uxw
�yz {�� < :��;:���; rst�uvw0st�uxw

�yz {�                                                       

 

                               (4.1) 
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Fig. 4.1 Nodal points used. 

 

An iterative procedure is actually used in which the values of the variables at nodal points are 

first guessed. Updated values are then obtained by applying the governing equations and the 

process is repeated until convergence is attained. For this reason, Eq. (4.1) is written as: 

k��� � �Pk�~1�� < k�01��
�g� Q < Pk���~1 < k���01

�h� Q < :��;:���; ei���~1 7i���01
��h f�

<� �� ei���~1 7i���01
��h f �ei���~1 7i���01

��h f < "m ei���~1 7i���01
��h f�� 

�< ^stvw�u0stxw�u
�y} _ ^|t�uvw0|t�uxw�yz _ 7 ^st�uvw0st�uxw

�yz _ ^|tvw�u0|txw�u�y} _� �̂ �y}V < �
yzV_�B      

              (4.2) 

The right-hand side of this equation is calculated using the “most recent” values of the variables. 

Under-relaxation is actually used so the updated value of k is given by: 

k���1 � k���� < mDk���&,�& 7 k���� F                                                   (4.3) 

Where k���&,�& is the value given by Eq. (4.2) and k����  is the value of  k��� at the previous iteration. 
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Eq. (4.2) is applied at all “internal” nodal points, i.e., at all points within the enclosure. The 

boundary conditions determine the dimensionless temperatures on the walls. These give: 

� � ���� � � ��			k1�� � �� k��� � �                                    (4.4) 

There being N nodal points in Y-direction and M in X-direction. On the other two walls, since 

the gradient in the Y-direction is zero, to first order accuracy: 

2 � ���� � ���							k��1 � k����			k��� � k���01                     (4.5) 

The stream function equation, i.e., Eq.(3.14), is treated in the same way as the energy equation. 

The following finite-difference form of Eq. (3.14) is, therefore, obtained: 

rΨt�uvw0�Ψt�u~Ψt�uxw
∆zV { < rΨtvw�u0�Ψt�u~Ψtxw�u

∆}V { < �"m rΨt�uvw0Ψt�uxw
�∆z { rΨt�uvw0�Ψt�u~Ψt�uxw

∆zV { <
��� rΨt�uvw0�Ψt�u~Ψt�uxw

∆zV < Ψtvw�u0�Ψt�u~Ψtxw�u
∆}V { � ��� rθt�uvw0θt�uxw

�∆z �LM� 7 θtvw�u0θtxw�u
�∆} M2N�{  (4.6)                                       

 

Ψ��� � �eΨ���~1 < Ψ���01
∆h� f� < eΨ�~1�� < Ψ�01��

∆g� f < �"m eΨ���~1 7 Ψ���01
�∆h f eΨ���~1 < Ψ���01

∆h� f 

<��� eΨ���~1 < Ψ���01
∆h� < Ψ�~1�� < Ψ�01��

∆g� f 7 ��� Pθ���~1 7 θ���01
�∆h �LM�� 7 

��θtvw�u0θtxw�u
�∆} M2N�_� � �

∆zV < �
∆}V < ���

∆zV ^Ψt�uvw0Ψt�uxw
∆z _ < �),V

∆}V M2N� < �),V
∆zV �LM��B                 

(4.7) 

The right-hand side of this equation is again calculated using the "most" recent vues of the 

variables. Under-relaxation is also again used so the updated value of i, j is actually given by:  

i���1 � i���� < mDi���&,�& 7i����F                                                 (4.8) 

Where i���&,�& is the value given by Eq. (4.7) and i����  is the value of Ψ��� at the previous iteration. 

r( < 1) is again the under-relaxation parameter. 
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Eq. (4.7) is applied at all "internal" nodal points. The boundary conditions have the value of'	i = 

0 on all boundary points, i.e.: 

� � ���� � � ��			i��� � �� ��i��� � � 

2 � ���� � ���								i��� � �� ��i��� � �                                (4.9) 

The above procedure is actually implemented in the following way: 

1. The values of i��� and k��� at all nodal points are first set equal to arbitrary initial values, 

typically the following are used: 

i��� � � 

k��� � �                                                       (4.10) 

The assumed k distribution is that which would exist if there was no convective motion, i.e., if 

conduction alone existed. Its use is consistent with the assumed distribution of		i which implies 

that there is no flow in the enclosure.  

2. Eq. (4.7) in conjunction with Eq. (4.8) is used to obtain updated values of		i���. Because 

iteration is being used, this process should really be repeated over and over until values of 

	i��� corresponding to the initially assumed distribution of k are obtained. Experience 

suggests, however, that it is quite adequate to undertake this step just twice. 

3. Eq. (4.2) in conjunction with Eq. (4.3) is used to obtain updated values of	k���. This step is 

also undertaken twice. 

4. Steps (2) and (3) are repeated over and over until convergence is obtained to a specified 

accuracy which is ��0�. 

5. The heat transfer rate distribution is obtained by applying Fourier's law at the heated and 

cooled walls, i.e.: 
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��w�u � O,D(1�� 7 (���F
�4  

����u � O,D(�01�� 7 (���F
�4  

(4.11) 

6.  The local Nusselt number is obtained at the heated and cooled walls, i.e.: 

 

�61�� � � 7 k���
�h  

�6��� � k�01��
�h  

                                            (4.12) 

Where Nu is the local Nusselt number based on W and where it has been noted that k1�� � �, and 

k��� � �. 

Because uniform grid spacing has been used, the mean Nusselt numbers are given by: 

�6����) � �h
� e�61�1� < �61�� < �61�@ <�< �61��01 < �61��� f 

�6����[ � �h
� e�6��1� < �6��� < �6��@ <�< �6���01 < �6���� f 

(4.13) 

 

4.3 Numerical solution justification: 

The results, which had obtained by using finite difference method in this study had compared 

with some results, which had obtained by P.H. and D.Naylor (1973). A
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This results shown in fig.(4.2-a) and fig.(4.3-a) are obtained by canceling the magnetic effect, 

Forchheimer, Joule and viscous heating effects terms so, the results are obtained for ϕ=90°, A = 

1, Fr = 0, Ge=0, ��� � �, and ��� � ��. 

 

 

 

 

 

 

 

(a) 

 

(b) 

Fig. 4.2 Typical dimensionless streamline and dimensionless temperature patterns. (a) Present 

work, (b) P.H. and D.Naylor work. 
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By comprising the presented results shown in fig.(4.2-a) to the traditional figure shown in 

fig.(4.2-b)  which are obtained for ϕ=90°, A = 1, Fr = 0, Ge=0, ��� � �, and ��� � �� it can 

be seen that the maximum value of dimensionless stream functions are 4.5 for both results, this 

enhances the presented results in this work. On the other hand, as it is shown, the hot fluid rises 

up along the left-hand side hot wall and descends along the right-hand side cold wall as seen in 

fluid isothermal contours which forms a clockwise flow so; the negative sign is coming from the 

direction of flow.  

 

 

 

 

 

  

 

 

                 (a)                                                                  (b) 

Fig. 4.3 Variation of mean Nusselt number with ��� for various A. (a) Present work, (b) P.H. 

and D.Naylor work.   

 

and by comparison the present results show in fig.(4.3-a) to the traditional result in fig.(4.3-b) 

which are obtained for ϕ=90°, A = 1, Fr = 0, Ge=0, ��� � �, and ��� � �� it can be seen that 

the mean Nusselt number have the maximum value at A=1 for both results. So, it can found that 

the results are identical.   
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Chapter 5 
Results and Discussion 
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5.1 Introduction: 

A numerical study was performed to examine the steady-state, laminar convection heat transfer 

problem inside a porous media filled inclined rectangular enclosures, the parameters are the 

magnetic influence number, the Rayleigh number, the Forchheimer number, the inclination 

angle, the aspect ratio of the enclosure, and the Gebhart number. The left-hand side wall is hot 

and the right-hand side wall is cold, the other two walls of the enclosure are adiabatic. The Finite 

difference scheme method is used to solve the momentum and energy equations. The effects of 

all parameters above are included in the final system of partial differential equations and there 

effects on the fluid flow and temperature are going to be studied. The dimensionless streamlines 

and isotherms are plotted to obtain flow patterns and temperature fields at different effects of all 

parameters above. Also, the effects of all parameters on the mean Nusselt number and the center 

dimensionless stream are plotted. 

5.2 The results without viscous and Joule heating effects (Ge = 0): 

5.2.1 Magneto hydrodynamic effects: 

The Magneto hydrodynamic effects can be studied by using different values of the magnetic 

influence number (���) in the momentum equation for �=30°, A = 1, Fr = 0.01. The results 

show that the flow and temperature field are very complex. Figure (5.1) illustrates the effect of 

magnetic influence number on the dimensionless streamlines and isotherms patterns, as it is 

shown, the hot fluid rises up along the left-hand side hot wall and descends along the right-hand 

side cold wall as seen in fluid isothermal contours. At ��� � �  the hotter fluid along the left-

hand side wall ascends upward and the colder fluid along the right-hand side wall descends 

downward quickly; due to the usual gravitational buoyancy force, which forms a clockwise flow. 
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At ��� � �
�� the hot fluid along the left-hand side wall ascends upward and the cold fluid 

along the right-hand side wall descends downward with smaller dimensionless stream function 

by comparison with fluid flow at	��� � �. At	��� � �
� the dimensionless stream function have 

very small value which is less than 1. By increasing ��� to reach	�, the magnetic force becomes 

large and the dimensionless stream function of the hot fluid along the left-hand side wall has 

bigger value than the cold fluid along the right-hand side wall. On the other hand, the fluid in the 

middle half enclosure has two circulations of flow with bigger dimensionless stream function 

value by comparison with the flow along the walls. At ��� � � The hot fluid along the left-hand 

side wall has circulation of flow with bigger dimensionless stream value by comparison with the 

cold fluid along the opposite wall and in the middle half of the enclosure. So, by increasing ��� 

the circulation of flow becomes along the left-hand side wall and the dimensionless stream 

function is decreasing to reach negligible value; due to the magnetic effect is just reversed to the 

usual gravitational convection and the heat transfer becomes by conduction; due to decreasing in 

Nusselt number to reach 1 at ��� � . Figure (5.2) shows the relation between the variations of 

mean Nusselt number with magnetic influence number. It can be seen that the mean Nusselt 

number is decreased by increasing the magnetic influence number; this is due to decreasing in 

dimensionless temperature in the upper half region along the left-hand side and the lower half 

region along the right-hand side wall. 
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(e)          

 

 

 

       

        (f) 

Fig. 5.1 Typical dimensionless streamline and dimensionless temperature patterns for various 
magnetic influence number (a) ��� � ��	 (b) ��� � �
���	 (c) ��� � �
��	 (d) ��� � ��	(e) ��� � ��	 (f) ��� �  for �=30°, A = 1, Fr = 0.01, and	��� = 100 
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 Fig. 5.2 Variation of Nu-mean with ��� for an enclosure for �=30°, A = 1, Fr = 0.01, and	��� 
= 100 
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5.2.2 The Modified Rayleigh number effects: 

Figures (5.3) illustrates the effect of Rayleigh number in the momentum equation on the 

dimensionless streamlines and isotherms patterns with other parameters unchanged, as it is 

shown, Rayleigh number has a certain effect on the heat transfer and fluid flow. When the 

Rayleigh number is small, the magnitude of magnetic force has little effect on the heat transfer 

rate. At ���  = 1 the hot fluid along the left-hand side wall and the cold fluid along the right-

hand side wall have small value of dimensionless stream function of fluid flow, which is 0.015 at 

the centre of the enclosure and the heat transfer becomes by conduction. By increasing	��� to 

reach the maximum value which is 100, the magnetic force has the largest effect on the heat 

transfer rate and the value of dimensionless stream line reaches 3 at ��� � �
�� at the centre of 

the enclosure. The values of the mean Nusselt number are shown in Fig. (5.4). It is found that, 

When the Rayleigh number is small, the value of mean Nusselt number is 1; this is due to 

negligible convection heat transfer effects when 	��� � � and the value of Nu-mean = 1 means 

a pure conduction heat transfer problem. It can be seen also, the mean Nusselt number is 

increased to reach the maximum value at	��� � ���; this is due to increasing in convection heat 

transfer when the Modified Rayleigh number is increased.  
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(a) 
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(c) 

Fig. 5.3 Typical dimensionless streamline and dimensionless temperature patterns for various 
Darcy-modified Rayleigh number (a) ��� � ��	 (b) ��� � ���	 (c) ��� � ����	for �=30°, A = 

1, Fr = 0.01, and	��� � �
�� 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Variation of Nu-mean with Raw for an enclosure for various A for �=30°, Fr = 0.01, 
and	��� � �
�� 
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5.2.3 The inclination angle of the enclosure effects: 

In order to examine the effects of inclination angle, computations are carried out for a fluid with 

different values of the inclined angle; while other geometric parameters remained unchanged. 

Numerical results are obtained for ( ���  = 100, A = 1, ��� = 0.02, and Fr = 0.01). Figure (5.5) 

illustrates the effect of the inclination angle of the enclosure on the dimensionless streamlines 

and isotherms patterns with other parameters unchanged, as it is shown, � has a certain effect on 

the heat transfer and fluid flow. When	� � � the hotter fluid along the left-hand side wall 

descends downward and the colder fluid along the right-hand side wall ascends upward due to 

the usual gravitational buoyancy force, which forms a counterclockwise flow. At � � ��° the 

circulation of fluid becomes clockwise flow as well as � � ��°; this is due to decreasing in the 

gravitational buoyancy force by increasing the angle of inclination. At � � ��° the fluid flow 

have the largest dimensionless streamline function by comparison with the flow at any value 

of	�	. At � �180° the magnitude of magnetic force has not effect on the heat transfer rate. The 

hot fluid along the left-hand side wall and the cold fluid along the right-hand side wall have not 

flow when � �180°; this is due to the location of the hot wall which becomes at the upper 

portion of the enclosure. Figure (5.6 and 5.7) show the relation between the variation of mean 

Nusselt number and dimensionless center-stream function with angle of inclination for an 

enclosure for various ��� and	���, respectively. It can be seen that at � � ��° the mean Nusselt 

number and dimensionless center-stream function have maximum values. On the other hand, it 

can be seen that the dimensionless center-stream function is decreased by increasing the 

magnetic influence number and it is increased by increasing the Rayleigh number.  
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(a) 

(b) 

Fig. 5.5 Typical dimensionless streamline and dimensionless temperature patterns for various 
inclination angle of the enclosure (a) � � ��	 (b) � � ���		for	��� � ���, A = 1, Fr = 0.01, 

and	��� � �
�� 
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Fig. 5.6 Variation of mean Nusselt number and dimensionless center-stream function with angle 
of inclination for an enclosure for various ��� for	��� � ���, A = 1, Fr = 0.01   

 

 

 
 
 
 
 
 
 

 

 

 

Fig. 5.7 Variation of mean Nusselt number and dimensionless center-stream function with angle 
of inclination for an enclosure for various ��� for A = 1, Fr = 0.01, and	��� � �
�� 
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5.2.4 The aspect ratio of the enclosure effects: 

Figure (5.8) illustrates the effect of aspect ratio of the enclosure on the dimensionless streamlines 

isotherms with other parameters unchanged, as it is shown, it is found that, When A=0.4,0.6, and 

1 the fluid is rotating around the centre of the enclosure. At A=3, 5 the fluid has two and four 

circulations of flow, respectively. On the other hand, when the aspect ratio less than or equal 1 

the heat transfer will be increased; this is due to small distance between the two boundaries and 

increasing in the dimensionless temperature at the upper left-hand side and the lower right-hand 

side, by increasing the aspect ratio to become bigger than 1 the heat transfer will be decreased; 

this is due to increasing in the length of the enclosure and the fluid has more than one circulation 

of flow therefore; the dimensionless temperature at the upper left-hand side and the lower right-

hand side are decreased. So, the dimensionless stream function and the Nusselt number are 

increased when the aspect ratio less than 1 and decreased when the aspect ratio bigger than 1.  

The values of the mean Nusselt number are shown in Figure (5.4) for A=1, 3, and 5. It can be 

seen that the heat transfer is decreased with the increasing of aspect ratio. 
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(d) 

 

(f) 

Fig. 5.8 Typical dimensionless streamline and dimensionless temperature patterns for various 
aspect ratio of the enclosure (a) � � �
�	 (b) � � �
H�			(c) � � �	, (d) � � ��	 (f) � � ��	for	� ����,	��� � ���, Fr = 0.01, and	��� � �
�� 
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5.3 The results with viscous and Joule heating effects: 

5.3.1 Magneto hydrodynamic effects: 

The Magneto hydrodynamic effects can be studied by using different values of the magnetic 

influence number (���) in the momentum equation through the magnetic effect term and in the 

energy equation through the Joule heating effect term. for �=30°, A = 1, Fr = 0.01, Ge=0.05. 

Figure (5.9) shows the relation between the variations of mean Nusselt number at the cold-hand 

side wall with magnetic influence number. It can be seen that the mean Nusselt number is 

decreased by increasing the magnetic influence number; due to decreasing in the dimensionless 

temperature value in the lower half region along the right-hand side wall. Figure (5.10) illustrates 

the effect of magnetic influence number on the dimensionless streamlines and isotherms patterns, 

as it is shown, the hot fluid rises up along the left-hand side hot wall and the cold fluid descends 

along the right-hand side cold wall as seen in fluid isothermal contours. On the other hand, the 

cold fluid near the right-hand side wall is at lower temperature, and the hot fluid near the left-

hand side wall is at higher temperature. By increasing the magnetic influence number the 

dimensionless temperature value is decreased therefore, the mean Nusselt number and the fluid 

flow are decreased. At ��� � � the dimensionless temperature value is increased for the hot 

fluid in the upper left-hand corner of the enclosure to become larger than 0.9 as well as the 

dimensionless stream lines are moved to the upper right-hand corner; due to the Gebhart number 

effects in Joule term.  From ��� � �
�� 7 �
� the hot fluid along the left-hand side wall ascends 

upward and the cold fluid along the right-hand side wall descends downward with smaller 

dimensionless stream function by comparison with fluid flow at	��� � �, so the heat transfer 

and fluid flow are decreased. By increasing ��� to reach	�, the magnetic force becomes larger 
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and the dimensionless stream function of the hot fluid along the left-hand side wall has bigger 

value than the cold fluid along the right-hand side wall. On the other hand, the fluid in the middle 

half of the enclosure has two circulations of flow with bigger dimensionless stream function 

value by comparison with the flow along the walls. At ��� � � The hot fluid along the left-hand 

side wall has circulation of flow with bigger dimensionless stream value by comparison with the 

cold fluid along the opposite wall and in the middle half of the enclosure. So, by increasing ��� 

the circulation of flow becomes along the left-hand side wall and the dimensionless stream 

function is decreased to reach negligible value at	��� � .  

 

 

 

 

 

 

 

 

 ��� 

Fig. 5.9 Variation of Nu-mean at the cold-side wall with ��� for an enclosure for �=30°, A = 1, 
Fr = 0.01, Ge = 0.05 and	��� = 100 
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(e) 

 

 

 

(f) 

 

Fig. 5.10 Typical dimensionless streamline and dimensionless temperature patterns for 
various magnetic influence number (a) ��� � ��	 (b) ��� � �
���	 (c) ��� � �
��	 (d) ��� � ��	(e) ��� � ��	 (f) ��� �  for �=30°, A = 1, Fr = 0.01, Ge = 0.05 and	��� = 

100 
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5.3.2 The Gebhart number effects: 

Figures (5.11) illustrates the effect of Gebhart number through the viscous and Joule heating 

terms in the energy equation on the dimensionless streamlines and isotherms patterns with other 

parameters unchanged, as it is shown, Gebhart number has a certain effect on the heat transfer 

and fluid flow. By increasing the Gebhart number the dimensionless temperature value is 

increased therefore, the fluid flow is increased and moved to the upper right-hand corner; this is 

due to the increasing in hot fluid inside the enclosure and this hot fluid will be moved to the 

upper left-hand corner and make circulation of fluid. At Ge = 0 the hot fluid rises up along the 

left-hand side hot wall and the cold fluid descends along the right-hand side cold wall as seen in 

fluid isothermal contours. On the other hand, the fluid is rotating around the centre of the 

enclosure with maximum fluid flow by comparison with the flow along the walls. From Ge = 

0.02-0.05 the dimensionless temperature of the hot fluid in the upper left-hand corner of the 

enclosure is increased and the cold fluid in the lower right-hand corner of the enclosure is 

decreased, therefore, the mean Nusselt number at the cold-hand side wall is decreased. By 

increasing Ge the dimensionless stream lines are moved to the upper right-hand corner and the 

dimensionless temperature value is increased for the hot fluid in the upper left-hand corner of the 

enclosure to become larger than 0.9 at Ge = 0.08; this is due to the increasing in the work done 

by magnetic field force on the fluid and the increasing in the friction between the fluid layers 

inside the enclosure. Figure (5.12) shows the relation between the variations of mean Nusselt 

number at the cold-hand side wall with Gebhart number. It can be seen that the mean Nusselt 

number is decreased by increasing in the Gebhart number due to increasing in dimensionless 

temperature in the upper half region along the left-hand side.   
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(c) 

 

(d) 

Fig. 5.11 Typical dimensionless streamline and dimensionless temperature patterns for 
various Gebhart number (a) �� � ��	 (b) �� � �
���	 (c) �� � �
���	 (d) �� � �
��	for �=30°,  ��� � �
��, A = 1, Fr = 0.01, and	��� = 100 
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Fig. 5.12 Variation of Nu-mean at the cold-side wall with Ge for an enclosure for �=30°,��� � �
��, A = 1, Fr = 0.01, and	��� = 100 
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5.3.3 Modified Rayleigh number effects: 

Figures (5.13) illustrates the effect of Rayleigh number in the momentum equation on the 

dimensionless streamlines and isotherms patterns with other parameters unchanged, as it is 

shown, Rayleigh number has a certain effect on the heat transfer and fluid flow. When the 

Rayleigh number is small, the magnitude of magnetic force has little effect on the heat transfer 

rate. At ���  = 1 the hot fluid along the left-hand side wall and the cold fluid along the right-

hand side wall have small value of dimensionless stream function of fluid flow, which is 0.015 at 

the centre of the enclosure. By increasing	��� to reach the maximum value which is 100, the 

magnetic force has larger effect on the heat transfer rate and the value of dimensionless stream 

line reaches to become 3 at ��� � �
�� at the centre of the enclosure. The values of the mean 

Nusselt number are shown in Fig. (5.14). It is found that, When the Rayleigh number is small, 

the value of mean Nusselt number is 1 and then increases to reach the maximum value at	��� �
���. It can be seen that the variation of Nu-mean with ��� for an enclosure for various A, as it 

is shown, the maximum value of mean Nusselt number is at A=1, this is due to negligible 

convection heat transfer effects when 	��� � � and the value of Nu-mean = 1 means a pure 

conduction heat transfer problem.   
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(c) 

Fig. 5.13 Typical dimensionless streamline and dimensionless temperature patterns for 
various Darcy-modified Rayleigh number (a) ��� � ��	 (b) ��� � ���	 (c) ��� �����	for �=30°, A = 1, Fr = 0.01, Ge=0.05, and	��� � �
�� 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14 Variation of Nu-mean with ��� for an enclosure for various A for �=30°, A = 
1, Fr = 0.01, Ge=0.05, and	��� � �
��
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5.3.4 The inclination angle of the enclosure effects: 

In order to examine the effects of inclination angle, computations are carried out for a fluid with 

the inclined angle varying from 0 to 180°, while other geometric parameters remained 

unchanged. Numerical results are obtained for ( ���  = 100, A = 1, ��� = 0.02, Ge=0.05, and Fr 

= 0.01). Figure (5.15) illustrates the effect of the inclination angle of the enclosure on the 

dimensionless streamlines and isotherms patterns with other parameters unchanged, as it is 

shown, � has a certain effect on the heat transfer and fluid flow. When	� � � the hotter fluid 

along the left-hand side wall descends downward and the colder fluid along the right-hand side 

wall ascends upward due to the usual gravitational buoyancy force, which forms a 

counterclockwise flow. At � � ��° the hot fluid along the left-hand side wall ascends upward 

and the cold fluid along the right-hand side wall descends downward which forms a clockwise 

flow as well as � � ��°. At � � ��° the fluid flow have the largest dimensionless streamline 

function by comparison with the flow at differentiating value of	�	. At � �180° the magnitude of 

magnetic force has not effect on the heat transfer rate. The hot fluid along the left-hand side wall 

and the cold fluid along the right-hand side wall have not flow when � �180°.  

Figure (5.16, 5.17, and 5.18) show the relation between the variation of mean Nusselt number 

and dimensionless center-stream function with angle of inclination for an enclosure for various 

���, 	���, and Ge, respectively. It can be seen that at � � ��° mean Nusselt number and 

dimensionless center-stream function have maximum values. On the other hand, it can be seen 

that the dimensionless center-stream function is decreased by increasing in the magnetic 

influence number and it is increased by increasing the modified Rayleigh number; this is due 

retardation effect of the magnetic field and favorable effect of the buoyancy forces.  
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(a) 

(b) 

Fig. 5.15 Typical dimensionless streamline and dimensionless temperature patterns for 
various inclination angle of the enclosure (a) � � ��	 (b) � � ���		for	��� � ���, A = 1, 

Fr = 0.01, Ge=0.05, and	��� � �
�� 
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Fig. 5.16 Variation of mean Nusselt number and dimensionless center-stream function 
with angle of inclination for an enclosure for various ��� for	��� � ���, A = 1, Fr = 

0.01, and Ge=0.05 

 
 
 
 
 
 
 

 

 

 

 

  

 

Fig. 5.17 Variation of mean Nusselt number and dimensionless center-stream function 
with angle of inclination for an enclosure for various ��� for A = 1, Fr = 0.01, Ge=0.05, 

and	��� � �
��  
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Fig. 5.18 Variation of mean Nusselt number and dimensionless center-stream function 
with angle of inclination for an enclosure for various Ge for A = 1, Fr = 0.01,	��� ����, and	��� � �
��  

5.3.5 The aspect ratio of the enclosure effects: 

Figure (5.19) illustrates the effect of aspect ratio of the enclosure on the dimensionless 

streamlines with other parameters unchanged, as it is shown, it is found that, When A=1 the fluid 

is rotating around the centre of the enclosure so, it have one circulation of flow. At A=3 the fluid 

has two circulations of flow, respectively. The values of the mean Nusselt number are shown in 

Figure (5.14). It can be seen that the variation of Nu-mean with ��� for an enclosure for various 

A, as it is shown, the heat transfer is decreased with the increasing of aspect ratio when the 

aspect ratio bigger than 1.  
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(a) 

(b) 

Fig. 5.19 Typical dimensionless streamline and dimensionless temperature patterns for various 
aspect ratio of the enclosure (a) � � ��	 (b) � � ��	for	� � ���,	��� � ���, Fr = 0.01, Ge = 0.05 

and	��� � �
�� 
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5.4 Forchheimer number effects: 

Figures (5.20) illustrates the effect of Forchheimer number in the momentum equation on the 

dimensionless streamlines and isotherms patterns with other parameters unchanged, as it is 

shown, "m has a certain effect on the heat transfer and fluid flow by increasing the Forchheimer 

number the circulation of flow becomes in the upper portion of the enclosure and the dimension 

less stream function values are decreased; this is due to the increasing in the porosity inside the 

enclosure. On the other hand, the heat transfer inside the enclosure becomes by conduction; due 

to decreasing in Nusselt number. Figure (5.21) shows the relation between the variations of mean 

Nusselt number with Forchheimer number. It can be seen that the mean Nusselt number is 

decreased by increasing the Forchheimer number; this is due to decreasing in dimensionless 

temperature in the upper half region along the left-hand side and the lower half region along the 

right-hand side wall. 
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(b) 

(c) 

Fig. 5.20 Typical dimensionless streamline and dimensionless temperature patterns for various 
Forchheimer number (a) "m � ��	 (b) "m � �
����	 (c) "m � �
���	 for �=30°, A = 1,	��� � �, 

Ge=0, and	��� = 100 
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Fig. 5.21 Variation of Nu-mean with Forchheimer number for an enclosure for �=30°, A = 1, 
��� � �, Ge=0, and	��� = 100 
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Chapter 6 
Conclusion and 

Recommendation 
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6.1 Conclusion: 

Flow field and heat transfer characteristics have been analyzed numerically for the 

magnetohydrodynamics natural convection heat transfer problem inside a porous media filled 

inclined rectangular enclosures. Finite difference scheme method was used. Based on the 

previous results the following may be concluded: 

(1) Heat transfer and fluid flow are decreased with the increasing of magnetic influence number.  

(2) When the Darcy number is small, the magnitude of magnetic force has little effect on the heat 

transfer rate. Heat transfer and fluid flow are increased with the increasing of Darcy-modified 

Rayleigh number.  

(3) Inclination angle has a certain effect on the heat transfer and fluid flow.  

(4) Aspect ratio also affects the heat transfer and fluid flow. Heat transfer is decreased with the 

increasing of aspect ratio. 

(5) By increasing Ge heat transfer for the hot fluid in the upper left-hand corner of the enclosure 

and fluid flow are increased. 

 (6) By increasing Ge the viscous and Joule heating effects are increased and the fluid flow is 

moved to the upper right-hand corner. 
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6.2 Recommendations: 

In the present work, the MHD-natural convection interaction inside rectangular porous filled 

enclosures are going to be formulated using continuity, Forchheimar of Darcy law and energy, 

the governing equations are going to be transformed into dimensionless form using a set of 

suitable variables than solved using a finite difference scheme. The following suggestions for 

further investigation based on the previous work are recommended: 

1. Studying the effect of changing the boundary condition. 

2. Studying the problem with variations of both velocity and temperature fields in time. 

3. Studying the problem with add another term to the governing equations, such as the 

analogous to the Laplacian term that appears in the Navier-Stokes equation. 
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 abcdاري اhcdاijklmوhopdا qrstudراvwcm xyz {b| qmjym }~و q� qys 

 

 

 إ��اد

�jcد� q�� نjy� ديj� 

 

 اh�bdف

 ا�dآ�vر ��bة ا�dو|hي

 

FGHI 

 abrdه�ا ا q� abcdاري اhcdراvwcm xyz {b| qmjym }~و q� qysijklmوhopdا qrstudا 
 �ctdا x�s~ �zو��dل واv�dا �m ���jkdارة اhcdا �m aآ hs��� رvo�� �|او�� a�jmو ap�dا asu�ym

 jok�numerically . �|ار�z نvp| �sc� �rر و�vwcbdا xy�dود ا��adiabatic  �|h� و ا
isothermal  . ¡dإ jo�|vc� x�s~ �¢judم وا�rdد¥ت اjrmdimensionless form  ام�¦�~j�

 hsl�mfinite difference scheme. The governingات �ksrm و��r ذj� jo�� x�s~ §d~�¦�ام 
parameters  hs��� رت وjotsz x¢ر hs��� و qysijklbdا abcdا hs��� qه Rayleigh 

numberرvwcbdا xy��d ضhr�d لvudا �tyª hsاو|� و����dا hsل . و���vwcdا x� q�dا «�j�kdا
 jos�� دةj|�� ¬ªأ �st� �®dو qysijklbdا abcdدة اj|�� ¯�jbdن اj|hz ارة وhcdل اj®�ªن إjw®ª �ks�

Rayleigh number  ارة وhcdل اj®�ªإ �m aف |�داد آv~ رvwcbdا xy��d ضhr�d لvudا �tyªو
¯�jbdن اj|hz . دةj|��Gebhart number  �m aف |�داد آv~¯�jbdن اj|hz ارة وhcdل اj®�ªإ  . 
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